Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Periodontol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708919

RESUMO

BACKGROUND: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS: Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS: Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION: The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.

2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542181

RESUMO

Periodontal defects' localization affects wound healing and bone remodeling, with faster healing in the upper jaw compared to the lower jaw. While differences in blood supply, innervation, and odontogenesis contribute, cell-intrinsic variances may exist. Few studies explored cell signaling in periodontal ligament stem cells (PDLSC), overlooking mandible-maxilla disparitiesUsing kinomics technology, we investigated molecular variances in PDLSC. Characterization involved stem cell surface markers, proliferation, and differentiation capacities. Kinase activity was analyzed via multiplex kinase profiling, mapping differential activity in known gene regulatory networks. Upstream kinase analysis identified stronger EphA receptor expression in the mandible, potentially inhibiting osteogenic differentiation. The PI3K-Akt pathway showed higher activity in lower-jaw PDLSC. PDLSC from the upper jaw exhibit superior proliferation and differentiation capabilities. Differential activation of gene regulatory pathways in upper vs. lower-jaw PDLSC suggests implications for regenerative therapies.


Assuntos
Osteogênese , Ligamento Periodontal , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular/fisiologia , Mandíbula , Células Cultivadas , Proliferação de Células
3.
J Orofac Orthop ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153533

RESUMO

OBJECTIVES: Long-term stabilization of orthodontic treatment outcomes is an everyday challenge in orthodontics. The use of permanently attached lingual retainers has become gold standard. However, in some cases, patients with fixed lingual retainers show retainer-associated side effects. Aiming to reduce these side effects, clinical knowledge about how tooth and arch form stability adaption takes place over time is important to improve long-term retention protocols. Therefore, the present study aimed to investigate occlusion stability and risks for a newly developing malocclusion in a time-dependent manner in patients being treated with permanent 2­point steel retainers. MATERIALS AND METHODS: In this retrospective cohort study, a total of 66 consecutive patients with round stainless-steel retainers were analyzed for postorthodontic occlusion changes after 1 year (group 1, n = 33) and 3 years (group 2, n = 33). Digital Standard Tessellation Language (STL) datasets of the lower jaw were obtained before retainer insertion (T0), and after a 1- (T1) or 3­year (T2) retention period. Using superimposition software, T1 and T2 situations were compared to T0 regarding rotational and translational changes in tooth positions in all three dimensions. RESULTS: Occlusion changes were low in both groups. The investigated lower canines were nearly stable in the 1­ and 3­year group, although a retention-time-dependent increase in tooth position change of the central and lateral incisors could be observed. CONCLUSION: The present data provide evidence for time-dependent development of posttherapeutic occlusal adaption limited to central and lateral incisors in patients treated with a 2-point retainer. The observed occlusal changes should be interpreted as an occlusal adaption process rather than severe posttreatment changes associated with the orthodontic retainer.

4.
Sci Rep ; 13(1): 19919, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964111

RESUMO

The structural process of bone and periodontal ligament (PDL) remodeling during long-term orthodontic tooth movement (OTM) has not been satisfactorily described yet. Although the mechanism of bone changes in the directly affected alveolar bone has been deeply investigated, detailed knowledge about specific mechanism of PDL remodeling and its interaction with alveolar bone during OTM is missing. This work aims to provide an accurate and user-independent analysis of the alveolar bone and PDL remodeling following a prolonged OTM treatment in mice. Orthodontic forces were applied using a Ni-Ti coil-spring in a split-mouth mice model. After 5 weeks both sides of maxillae were scanned by high-resolution micro-CT. Following a precise tooth movement estimation, an extensive 3D analysis of the alveolar bone adjacent to the first molar were performed to estimate the morphological and compositional parameters. Additionally, changes of PDL were characterized by using a novel 3D model approach. Bone loss and thinning, higher connectivity as well as lower bone mineral density were found in both studied regions. Also, a non-uniformly widened PDL with increased thickness was observed. The extended and novel methodology in this study provides a comprehensive insight about the alveolar bone and PDL remodeling process after a long-duration OTM.


Assuntos
Ligamento Periodontal , Técnicas de Movimentação Dentária , Camundongos , Animais , Técnicas de Movimentação Dentária/métodos , Ligamento Periodontal/diagnóstico por imagem , Remodelação Óssea
5.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762132

RESUMO

Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, ß-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, ß-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, ß-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L-1 of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L-1 ß-glycerolphosphate, 75 µmol L-1 ascorbic acid and 10 nmol L-1 dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.


Assuntos
Calcinose , Cemento Dentário , Humanos , Cálcio , Glicerofosfatos , Osteogênese , Diálise Renal , Periodonto , Cálcio da Dieta , Ácido Ascórbico/farmacologia , Dexametasona/farmacologia
6.
Ann Anat ; 249: 152102, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150306

RESUMO

One of the major components in cementum extracellular matrix is bone sialoprotein (BSP). BSP knockout (Ibsp) mice were reported to have a nonfunctional hypo-mineralized cementum, as well as detachment and disorganization of the periodontal ligament tissue. However, studies investigating the influence of Ibsp in cementoblasts are missing yet. This study investigates the influences of Bsp in three cementoblasts cell lines (OCCM.30-WT,IbspΔNterm, and IbspKAE). The mRNA expression of cementoblast and osteoclast markers (Col1a1, Alpl, Ocn, Runx2, Ctsk, Rankl and Opg) and the cell morphology were compared. Additionally, a functional monocyte adhesion assay was performed. To understand the influence of external stimuli, the effect of Ibsp was investigated under static compressive force, mimicking the compression side of orthodontic tooth movement. Cementoblasts with genotype IbspΔNterm and IbspKAE showed slight differences in cell morphology compared to OCCM.30-WT, as well as different gene expression. Under compressive force, the Ibsp cell lines presented expression pattern markers similar to the OCCM.30-WT cell line. However, Cathepsin K was strongly upregulated in IbspΔNterm cementoblasts under compressive force. This study provides insight into the role of BSP in cementoblasts and explores the influence of BSP on periodontal ligament tissues. BSP markers in cementoblasts seem to be involved in the regulation of cementum organization as an important factor for a functional periodontium. In summary, our findings provide a basis for investigations regarding molecular biology interactions of BSP in cementoblasts, and a supporting input for understanding the periodontal and cellular cementum remodeling.


Assuntos
Cemento Dentário , Camundongos , Animais , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Cemento Dentário/metabolismo , Camundongos Knockout , Linhagem Celular , Expressão Gênica
7.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175428

RESUMO

Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.


Assuntos
Elementos de Resposta Antioxidante , Fator 2 Relacionado a NF-E2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Ann Anat ; 246: 152023, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36400339

RESUMO

Porphyromonas gingivalis lipopolysaccharide (PG-LPS) is an important virulence factor potentially contributing to periodontal tissue destruction. Toll-like receptor 4 (Tlr4) is a key mediator of NF-kB activation during pathogen recognition. Previous work using Tlr4-specific antibodies demonstrated a partial neutralization of PG-LPS effects on murine cementoblasts, which can affect cell function and regulate gene expression of osteoclastic markers. PG-LPS also potentially influence the inflammation process and the resorption of mineralized tissues. Yet, such inflammatory responses and cell signaling events remain to be characterized at the protein level. We thus investigated the effect of 1 and 10 µg/ml of PG-LPS, respectively, on cell morphology, cell viability, and selected key downstream molecules of the Tlr4 signaling cascade in cementoblasts. High concentrations of PG-LPS (10 µg/ml) significantly reduced cell viability after 48 h. Upon PG-LPS-stimulation, Tlr4 was significantly downregulated. Equally, IκBα, a downstream molecule, was downregulated in terms of phosphorylation and protein production. Furthermore, downstream signaling kinases, like serine/threonine kinase phospho-AKT and the mitogen-activated protein kinase (MAPK)-family, specifically phospho-ERK1/2, were significantly upregulated under high PG-LPS-concentrations. We provide new insights into PG-LPS-triggered intracellular signaling pathways in cementoblasts and thus deliver a basis for further research in PG-mediated periodontal inflammation.


Assuntos
Lipopolissacarídeos , Porphyromonas gingivalis , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Animais , Camundongos , Cemento Dentário/metabolismo , Inflamação , Lipopolissacarídeos/toxicidade , Fosforilação , Porphyromonas gingivalis/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
9.
J Periodontol ; 94(7): 882-895, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36547974

RESUMO

BACKGROUND: Clinical experience indicates that wounds in alveolar bone and periodontal tissue heal faster and more efficiently in the maxilla compared with the mandible. Since stem cells are known to have a decisive influence on wound healing and tissue regeneration, the aim of this study was to determine whether differences in proliferation and differentiation of periodontal ligament stem cells (PDLSC) from upper (u-PDLSC) and lower jaw (l-PDLSC) contribute to the enhanced wound healing in the maxilla. METHODS: u-PDLSC and l-PDLSC from the same donor were harvested from the periodontal ligament of extracted human maxillary and mandibular third molars. Cell differentiation potential was assessed by analyzing stem cell markers, proliferation rate, and multilineage differentiation among each other and bone marrow-derived mesenchymal stem cells (MSC). Successful differentiation of PDLSC and MSC toward osteoblasts, adipocytes, and chondrocytes was analyzed via reverse transcriptase-quantitative polymerase chain reaction and histochemical staining (Alizarin Red, Oil Red O, Toluidine Blue). RESULTS: u-PDLSC and l-PDLSC expressed the MSC-markers CD73+ , CD90+ , and CD105+ and lacked expression of CD34- and CD45- . Proliferation was significantly higher in u-PDLSC than in l-PDLSC, regardless of the culture conditions. Osteogenic (ALP, RunX2, and osteocalcin) and chondrogenic (SOX9 and ACAN) related gene expression as well as staining intensities were significantly higher in u-PDLSC than in l-PDLSC. No difference in adipogenic differentiation was observed. CONCLUSION: u-PDLSC showed a significantly higher proliferative and differentiation potential than l-PDLSC, offering a possible cell-based explanation for the differences in periodontal wound healing efficacy between maxilla and mandible.


Assuntos
Maxila , Ligamento Periodontal , Humanos , Células-Tronco/metabolismo , Diferenciação Celular , Osteogênese , Dente Molar , Células Cultivadas , Proliferação de Células
10.
Eur J Orthod ; 45(3): 308-316, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36308300

RESUMO

BACKGROUND: Orthodontic therapy aims to treat misaligned teeth and jaws to improve dental occlusion as well as the function and aesthetics of the masticatory system. Continuous data collection to check treatment quality is of great importance for the constant optimization of orthodontic care. OBJECTIVE: The aim of this retrospective multicentre cohort study was to systematically determine the outcome and quality of orthodontic treatment by applying the internationally established Index of Orthodontic Treatment Need (IOTN) and Peer Assessment Rating (PAR) index in multiple clinical settings for a representative number of patient cases. MATERIALS AND METHODS: A total of 1509 consecutive orthodontic patient cases (treatment completion between January 2018 and December 2020) from three representative orthodontic centres (University clinic, city office, small town office) were analysed in a multicentre study. The pre- and post-treatment casts were scanned, digitally measured, and partially automatically evaluated using the IOTN and PAR indices. RESULTS: A statistically significant improvement in occlusion was observed for medically necessary treatment of IOTN grades 4 and 5 in 97.30 per cent of the analysed cases and for treatment-requiring grades 2 and 3 in 94.08 per cent of the analysed cases. The average percentage PAR improvement was 76.51 per cent. 72.50 per cent of cases showed improvement of more than 70 per cent. The mean PAR index score was reduced from 28.19 ±â€…9.49 to 6.22 ±â€…5.41 points. CONCLUSION: The present data demonstrate that orthodontic treatment is efficient in inducing significant improvement of malocclusions in general and has a high success rate with severe dysgnathia.


Assuntos
Má Oclusão , Ortodontia Corretiva , Humanos , Estudos de Coortes , Índice de Necessidade de Tratamento Ortodôntico , Resultado do Tratamento , Estética Dentária , Má Oclusão/diagnóstico , Má Oclusão/terapia
11.
J Cell Mol Med ; 26(23): 5832-5845, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377725

RESUMO

Metastatic disease is the leading cause of death in children suffering from medulloblastoma and a major treatment challenge. The evidence of leptomeningeal dissemination defines the most aggressive tumours and is associated with increased mortality; thus, inhibition of migration as a factor involved in the process of metastatic disease is fundamental for the treatment and prevention of metastatic dissemination. Targeting the small Rho GTPases Rac1 has been shown to effectively impair medulloblastoma cell migration in vitro. Yet clinically applicable selective Rac1 inhibitors are still lacking. In view of the pertinent oncogenic role of the PI3K signalling cascade and tyrosine kinase-mediated signalling pathways in medulloblastoma, we explored clinically available targeted therapeutics to this effect. Here, we show that Rac1 is expressed in both the cytoplasm and nucleus in the medulloblastoma cell lines Daoy and MEB-Med-8A representative of two high risk medulloblastoma entities. We demonstrate that activated Rac1 is subject to substantial downmodulation following administration of the clinically available inhibitor of the PI3K pathway Pictilisib (GDC-0941) and the multityrosine kinase inhibitors Pazopanib and Sorafenib. The application of those drugs was associated with reduced mobility of the medulloblastoma cells and alterations of the actin skeleton. Of note, PI3K inhibition reveals the strongest anti-migratory effect in Daoy cells. Thus, our in vitro observations provide new insights into different strategies of blocking Rac1 and inhibiting migration in medulloblastoma employing clinically available agents paving the way for confirmatory studies in in vivo models.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Proteínas rac1 de Ligação ao GTP , Humanos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas rac1 de Ligação ao GTP/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
12.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230911

RESUMO

The cellular and molecular mechanisms of orthodontic tooth movement (OTM) are not yet fully understood, partly due to the lack of dynamical datasets within the same subject. Inflammation and calcification are two main processes during OTM. Given the high sensitivity and specificity of [68Ga]Ga-Pentixafor and Sodium [18F]Fluoride (Na[18F]F) for inflammation and calcification, respectively, the aim of this study is to assess their ability to identify and monitor the dynamics of OTM in an established mouse model. To monitor the processes during OTM in real time, animals were scanned using a small animal PET/CT during week 1, 3, and 5 post-implantation, with [68Ga]Ga-Pentixafor and Na[18F]F. Both tracers showed an increased uptake in the region of interest compared to the control. For [68Ga]Ga-Pentixafor, an increased uptake was observed within the 5-week trial, suggesting the continuous presence of inflammatory markers. Na[18F]F showed an increased uptake during the trial, indicating an intensification of bone remodelling. Interim and end-of-experiment histological assessments visualised increased amounts of chemokine receptor CXCR4 and TRAP-positive cells in the periodontal ligament on the compression side. This approach establishes the first in vivo model for periodontal remodelling during OTM, which efficiently detects and monitors the intricate dynamics of periodontal ligament.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Complexos de Coordenação , Fluoretos , Inflamação , Camundongos , Peptídeos Cíclicos , Sódio , Técnicas de Movimentação Dentária
13.
Sci Rep ; 12(1): 14970, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056072

RESUMO

Xanthohumol (XN) is a prenylated plant polyphenol that naturally occurs in hops and its products, e.g. beer. It has shown to have anti-inflammatory and angiogenesis inhibiting effects and it prevents the proliferation of cancer cells. These effects could be in particular interesting for processes within the periodontal ligament, as previous studies have shown that orthodontic tooth movement is associated with a sterile inflammatory reaction. Based on this, the study evaluates the anti-inflammatory effect of XN in cementoblasts in an in vitro model of the early phase of orthodontic tooth movement by compressive stimulation. XN shows a concentration-dependent influence on cell viability. Low concentrations between 0.2 and 0.8 µM increase viability, while high concentrations between 4 and 8 µM cause a significant decrease in viability. Compressive force induces an upregulation of pro-inflammatory gene (Il-6, Cox2, Vegfa) and protein (IL-6) expression. XN significantly reduces compression related IL-6 protein and gene expression. Furthermore, the expression of phosphorylated ERK and AKT under compression was upregulated while XN re-established the expression to a level similar to control. Accordingly, we demonstrated a selective anti-inflammatory effect of XN in cementoblasts. Our findings provide the base for further examination of XN in modulation of inflammation during orthodontic therapy and treatment of periodontitis.


Assuntos
Cemento Dentário , Propiofenonas , Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Propiofenonas/farmacologia
14.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897640

RESUMO

Mechanical compression simulating orthodontic tooth movement in in vitro models induces pro-inflammatory cytokine expression in periodontal ligament (PDL) cells. Our previous work shows that TLR4 is involved in this process. Here, primary PDL cells are isolated and characterized to better understand the cell signaling downstream of key molecules involved in the process of sterile inflammation via TLR4. The TLR4 monoclonal blocking antibody significantly reverses the upregulation of phospho-AKT, caused by compressive force, to levels comparable to controls by inhibition of TLR4. Phospho-ERK and phospho-p38 are also modulated in the short term via TLR4. Additionally, moderate compressive forces of 2 g/cm2, a gold standard for static compressive mechanical stimulation, are not able to induce translocation of Nf-kB and phospho-ERK into the nucleus. Accordingly, we demonstrated for the first time that TLR4 is also one of the triggers for signal transduction under compressive force. The TLR4, one of the pattern recognition receptors, is involved through its specific molecular structures on damaged cells during mechanical stress. Our findings provide the basis for further research on TLR4 in the modulation of sterile inflammation during orthodontic therapy and periodontal remodeling.


Assuntos
Ligamento Periodontal , Receptor 4 Toll-Like , Técnicas de Movimentação Dentária , Células Cultivadas , Humanos , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligamento Periodontal/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Mecânico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
15.
Clin Oral Investig ; 26(8): 5215-5222, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35474552

RESUMO

OBJECTIVES: To evaluate post-treatment movements of lower anterior teeth during orthodontic retention in patients with fixed twistflex retainers versus those with combined fixed and removable retainers. MATERIALS AND METHODS: This study was based on a retrospective data analysis of 57 adult patients during orthodontic retention. They were assigned to two groups: In group 1 (n = 30) the lower jaw was provided with twistflex retainers only and in group 2 (n = 27) with a twistflex combined with a removable retainer for night-time use. Orthodontic study models of the lower jaw were digitalized and superimposed. Tooth movements were analyzed at the retainer bonding (t0) and follow-up appointment ≥ six months later (t1). Rotational tooth movements (°) were measured around the x-axis (mesial/distal direction), the y-axis (buccal/lingual direction) and the z-axis (longitudinal direction, tooth axis). Translational tooth movements (mm) were registered along the x-axis (buccal/lingual direction), the y-axis (mesial/distal direction) and the z-axis (apical/coronal direction). RESULTS: Canine and incisor position changes during orthodontic retention were more pronounced in group 1 compared to group 2 except for canine rotations around the z-axis. In both groups in most of the cases stable lower incisor alignment could be found, but the proportion was significant higher in group 2 (group 1: 56.7% vs. group 2: 81.5%). Severe misalignment was present in 13.3% of the participants of group 1 and only in 7.4% of group 2. The extent of canine tipping and movements along the x- and y-axis in severe misalignment cases was significantly lower in group 2 compared to 1. CONCLUSIONS: Lower incisor alignment was more stable in patients with combined fixed and removable retainers compared to fixed retainers only. CLINICAL RELEVANCE: Based on the present findings, the routinely application of supplementary removable retainers can be recommended to enhance anterior tooth alignment in patients with fixed twistflex retainers.


Assuntos
Aparelhos Ortodônticos Fixos , Contenções Ortodônticas , Humanos , Incisivo , Mandíbula , Estudos Retrospectivos
16.
Basic Clin Pharmacol Toxicol ; 130(1): 132-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34740282

RESUMO

In genome-wide association studies, the CYP2C8 gene locus has been reported to be associated with bisphosphonate-related osteonecrosis of the jaw, a severe devastating side effect of antiresorptive bone treatment. The aim of this study was to elucidate the putative pathomechanism explaining the association between the genetic polymorphism with the alleles CYP2C8*2 and *3 causing low CYP2C8 activity, and disturbed periodontal remodelling in periodontal fibroblasts cultured from patients undergoing orthodontic treatment. CYP2C8 activity, enzyme expression and substrate metabolism were detected in human periodontal fibroblast cultures. Zoledronic acid caused enhanced reactive oxygen species (ROS) production in periodontal fibroblasts, which was enhanced by arachidonic acid as inflammatory signal. Enhanced bisphosphonate-induced uncoupling of the CYP2C8 enzyme was detected in the variant allele (CYP2C8*3) with the result of increased H2 O2 production and lowered substrate oxidation. Conversely, substrate (amodiaquine) addition led to decreased H2 O2 production in isolated CYP2C8 enzymes, but in CYP2C8*3 enzyme, increased H2 O2 was still detected, especially in presence of arachidonic acid. CYP2C8 variants leading to decreased enzyme activity in substrate oxidation may enhance ROS production by reaction uncoupling, and thus, contribute to difficulties in orthodontic treatment and the risk of side effects of antiresorptive drugs.


Assuntos
Citocromo P-450 CYP2C8/genética , Fibroblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ácido Zoledrônico/toxicidade , Alelos , Amodiaquina/farmacologia , Ácido Araquidônico/metabolismo , Conservadores da Densidade Óssea/toxicidade , Células Cultivadas , Fibroblastos/citologia , Estudo de Associação Genômica Ampla , Humanos , Peróxido de Hidrogênio/metabolismo , Ortodontia , Oxirredução , Ligamento Periodontal/citologia , Polimorfismo Genético , Espécies Reativas de Oxigênio/metabolismo
17.
Front Physiol ; 12: 716441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512388

RESUMO

Objective: Autophagy is an important cellular adaptation mechanism to mechanical stress. In animal experiments, inhibition of autophagy during orthodontic tooth movement triggered increased expression of inflammation-related genes and decreased bone density. The aim of this study was to investigate how autophagy affects cytokine levels of interleukin 6 (IL-6) in human periodontal ligament (hPDL) fibroblasts under mechanical pressure and the resulting influence on osteoblast communication. Methods: hPDL fibroblasts were subjected to physiologic mechanical load, constant overload, or rapamycin treatment for 16 to 24 h ± autophagy inhibitor 3-MA. Autophagosomes were quantified by flow cytometry. Gene expression of il-6 as well as IL-6 levels in the supernatant were determined with rtPCR and ELISA. To investigate the influence of mechanically-induced autophagy on cell-cell communication, an osteoblast-culture was subjected to supernatant from stimulated hPDL fibroblasts ± soluble IL-6 receptor (sIL-6R). After 24 h, osteoprotegerin (opg) and receptor activator of nuclear factor κB ligand (rankl) gene expressions were detected with rtPCR. Gene expression of a disintegrin and metalloproteinases (adam) 10 and 17 in stimulated hPDL fibroblasts was examined via rtPCR. Results: Autophagy was induced by biomechanical stress in hPDL fibroblasts in a dose-dependent manner. Mechanical load and overload increased IL-6 expression at gene and protein level. Autophagy inhibition further enhanced the effects of mechanical stimulation on IL-6 expression. Mechanical stimulation of hPDL fibroblasts downregulated adam10 and adam17 expressions. Inhibition of autophagy had stimulus-intensity depending effects: autophagy inhibition alone or additional application of physiological stress enhanced adam10 and adam17 expressions, whereas mechanical overload had adverse effects. Osteoblasts showed significantly reduced opg expression in the presence of supernatant derived of hPDL fibroblasts treated with autophagy inhibitor and sIL-6R. Conclusion: IL-6 levels were increased in response to pressure in hPDL fibroblasts, which was further enhanced by autophagy inhibition. This caused a decrease in opg expression in osteoblasts. This may serve as an explanatory model for accelerated tooth movement observed under autophagy inhibition, but may also represent a risk factor for uncontrolled bone loss.

18.
Biomolecules ; 11(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201602

RESUMO

Human Periodontal Ligament Fibroblasts (hPDLF), as part of the periodontal apparatus, modulate inflammation, regeneration and bone remodeling. Interferences are clinically manifested as attachment loss, tooth loosening and root resorption. During orthodontic tooth movement (OTM), remodeling and adaptation of the periodontium is required in order to enable tooth movement. hPDLF involvement in the early phase-OTM compression side was investigated for a 72-h period through a well-studied in vitro model. Changes in the morphology, cell proliferation and cell death were analyzed. Specific markers of the cell cycle were investigated by RT-qPCR and Western blot. The study showed that the morphology of hPDLF changes towards more unstructured, unsorted filaments under mechanical compression. The total cell numbers were significantly reduced with a higher cell death rate over the whole observation period. hPDLF started to recover to pretreatment conditions after 48 h. Furthermore, key molecules involved in the cell cycle were significantly reduced under compressive force at the gene expression and protein levels. These findings revealed important information for a better understanding of the preservation and remodeling processes within the periodontium through Periodontal Ligament Fibroblasts during orthodontic tooth movement. OTM initially decelerates the hPDLF cell cycle and proliferation. After adapting to environmental changes, human Periodontal Ligament Fibroblasts can regain homeostasis of the periodontium, affecting its reorganization.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/fisiologia , Ligamento Periodontal/fisiologia , Técnicas de Movimentação Dentária/métodos , Remodelação Óssea/fisiologia , Força Compressiva/fisiologia , Humanos , Ligamento Periodontal/citologia , Estresse Mecânico
20.
Ann Anat ; 234: 151668, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400981

RESUMO

Cementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood. Here, we investigated the effect of static compressive stimulation, simulating the compression side of orthodontic force and cell confluence on a murine cementoblast cell line (OC/CM). The influence of cell confluence in cementoblast cells was analyzed by MTS assay and immunostaining. Furthermore, mRNA and protein expression were investigated by real-time RT-PCR and western blotting at different confluence grades and after mechanical stimulation. We observed that cementoblast cell proliferation increases with increasing confluence grades, while cell viability decreases in parallel. Gene expression of remodeling markers is regulated by compressive force. In addition, cementoblast confluence plays a crucial role in this regulation. Confluent cementoblasts show a significantly higher basal expression of Bsp, Osterix, Alpl, Vegfa, Mmp9, Tlr2 and Tlr4 compared to sub-confluent cells. After compressive force of 48 h at 60% confluence, an upregulation of Bsp, Osterix, Alpl, Vegf and Mmp9 is observed. In contrast, at high confluence, all analyzed genes were downregulated through mechanical stress. We also proved a regulation of ERK, phospho-ERK and phospho-AKT dependent on compressive force. In summary, our findings provide evidence that cementoblast physiology and metabolism is highly regulated in a cell confluence-dependent manner and by mechanical stimulation.


Assuntos
Cemento Dentário , Proteínas Proto-Oncogênicas c-akt , Animais , Expressão Gênica , Camundongos , Ligamento Periodontal , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...